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synopsis 
We consider two approaches to strain magnification in a composite material, point out 

that they apply to different situations, and caution against misapplication of the equa- 
tions derived. 

Strain magnification occurs when a sample of a deformable matrix con- 
taining essentially nondeformable particles is subjected to an elongation or 
compression. Barring the formation of voids, the total sample deformation 
has to be accommodated by the matrix; hence the strain in the matrix is 
larger than the measured overall strain. 

In  general, it is necessary to distinguish between the maximum strain, 
which would prevail between the closest points of approach of two neighbor- 
ing particles, and the mean strain, which is obtained by averaging the strains 
over the entire range of particle separation distances. The former value 
would probably be relevant to failure properties of a composite; the latter 
would be the appropriate quantity to use for modulus, energy storage and 
dissipation. 

Even though the particles in a composite are most likely randomly dis- 
tributed, a number of authors have found it convenient to assume a particu- 
lar spatial arrangement. Smith,’ using a model of spheres in a close- 
packed array, predicts a strain magnification E ’ / C  given by: 

(1) c’/e = 1/(1 - 1.105pF”’) 

where e is the measured overall strain (ALILO), AL is the change in length, 
Lo is the initial specimen length, e‘ is the magnified strain in the matrix, and 
p~ is the volume fraction of filler particles. This result gives the strain in 
the matrix along the line between centers of adjacent spheres, i.e., the 
maximum rather than the mean strain. A similar result is obtained by 
F. Bueche2 using a model of cubical particles apparently in a cubic array. 
He gives the line fraction of polymer between two reference points in a 
filled system as 1 - (PF”’; hence the line fraction of filler, Lp/L0, is pF1/’. 

This led Bueche to the conclusion that the magnified extension ratio a’ is 
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where a = 6 + 1 and a’ = B’ + 1. 
magnification given by 

This is equivalent to a maximum strain 

(3) 
The mean strain magnification can be obtained by considering many 

different models. We shall illustrate its derivation for spheres of radius K 
whose centers are randomly distributed in the matrix. A line passing 
through the composite will intersect only spheres whose centers are within a 
cylinder of radius R around that line, such as spheres B and C in Figure 1. 
The line fraction of filler, LF/LO, is the total length of chords of spheres 
through which a line of unit length passes. The chord length, L in Figure 1, 
is 2(R2 - r2):/’ for spheres with centers at distance T from the line. If P is 
the number of sphere centers per unit volume, then 

€’/€ = 1/(1 - (PF’/S) 

LF/Lo = lR 2(R2 - r2) ‘lap 2?rrdr = (4?rP/3) R3 (4) 

Since P is equal to the number of particles per unit volume, 3qF/4uR3, it 
follows that 

LFILo = CPF (5) 

This relation can be shown to hold not only for spheres but also for particles 
of any shape or orientation. Thus, to obtain the mean magnified extension 
ratio, eq. (2) should read: 

a’ = (a - (OF)/(1 - (PF) (24 

A strain magnification ratio, c’/e, based on Bueche’s concept of line frac- 
tion equal to cube root of volume fraction2 has been used by a number of 
other a ~ t h o r s ~ - ~  to explain modulus increased in filled systems. The mean 
strain magnification, which is more appropriate for this problem, is 

€’/€ = 1/(1 - (PF) (6) 
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Fig. 1. Yliysiwl niodel for calculation of line fraction of filler. 
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111 ordrr to take into acrount tlre efft:ct of Iwnrtd or immobilized matrix at 
eq. (G) is rewritken to include an effective radius correction. t h c b  

If AT is the increase in particle radius, R ,  due to surface interactions, then 

(7) 
1 

1 - P F [ ~  4- (Ar/R)13 
- e f  

e 
_ -  

We have found that [l + (Ar /R)I3  is of the order of 1.75 for many sys- 
By using this value, cq. (7) can then be ex- tems of practical interest. 

panded to 

e f / e  = 1 + 1 . 7 5 ~ ~  + ( 1 . 7 5 ~ ~ ) '  + . . . (8) 

which, though derived from geometric considerations alone, is similar in 
form to the strain magnification equation of Mullins and Tobin' which was 
based on an extension of hydrodynamic considerations of Guth.*v9 
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